Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361954

RESUMO

Metabolic reprogramming is a key attribute of cancer progression. An altered expression of pyruvate kinase M2 (PKM2), a phosphotyrosine-binding protein is observed in many human cancers. PKM2 plays a vital role in metabolic reprogramming, transcription and cell cycle progression and thus is deliberated as an attractive target in anticancer drug development. The expression of PKM2 is essential for aerobic glycolysis and cell proliferation, especially in cancer cells, facilitating selective targeting of PKM2 in cell metabolism for cancer therapeutics. We have screened a virtual library of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) database of Indian medicinal plants to identify potential activators of PKM2. The initial screening was carried out for the physicochemical properties of the compounds, and then structure-based molecular docking was performed to select compounds based on their binding affinity towards PKM2. Subsequently, the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, PAINS (Pan-assay interference compounds) patterns, and PASS evaluation were carried out to find more potent hits against PKM2. Here, Tuberosin was identified from the screening process bearing appreciable binding affinity toward the PKM2-binding pocket and showed a worthy set of drug-like properties. Finally, molecular dynamics simulation for 100 ns was performed, which showed decent stability of the protein-ligand complex and relatival conformational dynamics throughout the trajectory. The study suggests that modulating PKM2 with natural compounds is an attractive approach in treating human malignancy after required validation.


Assuntos
Ativadores de Enzimas , Isoflavonas , Neoplasias , Piruvato Quinase , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Proteínas de Ligação a Fosfato/química , Proteínas de Ligação a Fosfato/metabolismo , Piruvato Quinase/metabolismo
2.
SLAS Discov ; 27(8): 419-427, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089246

RESUMO

Enzyme activation remains a largely under-represented and poorly exploited area of drug discovery despite some key literature examples of the successful application of enzyme activators by various mechanisms and their importance in a wide range of therapeutic interventions. Here we describe the background nomenclature, present the current position of this field of drug discovery and discuss the challenges of hit identification for enzyme activation, as well as our perspectives on the approaches needed to overcome these challenges in early drug discovery.


Assuntos
Ativadores de Enzimas , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico
3.
Molecules ; 27(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458743

RESUMO

Carbonic anhydrases (CAs) are a family of ubiquitous metal enzymes catalyzing the reversible conversion of CO2 and H2O to HCO3- with the release of a proton. They play an important role in pH regulation and in the balance of body fluids and are involved in several functions such as homeostasis regulation and cellular respiration. For these reasons, they have been studied as targets for the development of agents for treating several pathologies. CA inhibitors have been used in therapy for a long time, especially as diuretics and for the treatment of glaucoma, and are being investigated for application in other pathologies including obesity, cancer, and epilepsy. On the contrary, CAs activators are still poorly studied. They are proposed to act as additional (other than histidine) proton shuttles in the rate-limiting step of the CA catalytic cycle, which is the generation of the active hydroxylated enzyme. Recent studies highlight the involvement of CAs activation in brain processes essential for the transmission of neuronal signals, suggesting CAs activation might represent a potential therapeutic approach for the treatment of Alzheimer's disease and other conditions characterized by memory impairment and cognitive problems. Actually, some compounds able to activate CAs have been identified and proposed to potentially resolve problems related to neurodegeneration. This review reports on the primary literature regarding the potential of CA activators for treating neurodegeneration-related diseases.


Assuntos
Anidrases Carbônicas , Ativadores de Enzimas , Epilepsia , Doenças Neurodegenerativas , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Anidrases Carbônicas/química , Catálise , Ativadores de Enzimas/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Prótons
4.
PLoS One ; 17(3): e0265761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35312718

RESUMO

Glucokinase activators are regarded as potent candidates for diabetes treatment, however, in clinical studies on patients with type 2 diabetes, a diminishing efficacy was observed after chronic treatment with them. The mechanism of this reduction has not been elucidated, and whether it is a class effect of glucokinase activators remains inconclusive. Here, we firstly identified a diabetic animal model that shows the diminished efficacy after long-term treatment with MK-0941, a glucokinase activator that exhibited diminished efficacy in a clinical study, and we analyzed the mechanism underlying its diminished efficacy. In addition, we evaluated the long-term efficacy of another glucokinase activator, TMG-123. Goto-Kakizaki rats were treated with MK-0941 and TMG-123 for 24 weeks. The results showed that glycated hemoglobin A1C levels and plasma glucose levels decreased transiently but increased over time with the continuation of treatment in the MK-0941-treated group, while decreased continuously in the TMG-123-treated group. Only in the TMG-123-treated group, higher plasma insulin levels were shown at the later stage of the treatment period. For the mechanism analysis, we conducted a hepatic enzyme assay and liver perfusion study in Goto-Kakizaki rats after chronic treatment with MK-0941 and TMG-123, and revealed that, only in the MK-0941-treated group, the activity of glucose-6-phosphatase was increased, and hepatic glucose utilization was decreased compared to the non-treated group. These data indicate that disruptions in hepatic glucose metabolism are involved in the diminished efficacy of glucokinase activators.


Assuntos
Diabetes Mellitus Tipo 2 , Glucoquinase , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Glucoquinase/metabolismo , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Fígado/metabolismo , Ratos
5.
Am J Cardiol ; 163: 109-116, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774286

RESUMO

There remains a lack of prognosis models for patients with chronic thromboembolic pulmonary hypertension (CTEPH). This study aims to develop a nomogram predicting 3-, 5-, and 7-year survival in patients with CTEPH and verify the prognostic model. Patients with CTEPH diagnosed in Fuwai Hospital were enrolled consecutively between May 2013 and May 2019. Among them, 70% were randomly split into a training set and the other 30% as a validation set for external validation. Cox proportional hazards model was used to identify the potential survival-related factors which were candidate variables for the establishment of nomogram and the final model was internally validated by the bootstrap method. A total of 350 patients were included in the final analysis and the median follow-up period of the whole cohort was 51.2 months. Multivariate analysis of Cox proportional hazards regression showed body mass index, mean right atrial pressure, N-terminal pro-brain natriuretic peptide (per 500 ng/ml increase in concentration), presence of anemia, and main treatment choice were the independent risk factors of mortality. The nomogram demonstrated good discrimination with the corrected C-index of 0.82 in the training set, and the C-index of 0.80 (95% CI: 0.70 to 0.91) in the external validation set. The calibration plots also showed a good agreement between predicted and actual survival in both training and validation sets. In conclusion, we developed an easy-to-use nomogram with good apparent performance using 5 readily available variables, which may help physicians to identify CTEPH patients at high risk for poor prognosis and implement medical interventions.


Assuntos
Pressão Atrial/fisiologia , Regras de Decisão Clínica , Hipertensão Pulmonar/fisiopatologia , Mortalidade , Embolia Pulmonar/fisiopatologia , Adulto , Idoso , Anemia/sangue , Anemia/complicações , Angioplastia com Balão , Anti-Hipertensivos/uso terapêutico , Índice de Massa Corporal , Doença Crônica , Endarterectomia , Antagonistas dos Receptores de Endotelina/uso terapêutico , Ativadores de Enzimas/uso terapêutico , Epoprostenol/análogos & derivados , Feminino , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/terapia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Peptídeo Natriurético Encefálico/sangue , Nomogramas , Fragmentos de Peptídeos/sangue , Inibidores da Fosfodiesterase 5/uso terapêutico , Prognóstico , Modelos de Riscos Proporcionais , Artéria Pulmonar/cirurgia , Embolia Pulmonar/sangue , Embolia Pulmonar/complicações , Embolia Pulmonar/terapia , Pressão Propulsora Pulmonar , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Reprodutibilidade dos Testes , Taxa de Sobrevida
6.
Chem Biol Drug Des ; 99(2): 247-263, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34714587

RESUMO

Glucokinase is a key enzyme which converts glucose into glucose-6-phosphate in the liver and pancreatic cells of the human. In the liver, glucokinase promotes the synthesis of glycogen, and in the pancreas, it helps in glucose-sensitive insulin release. It serves as a "glucose sensor" and thereby plays an important role in the regulation of glucose homeostasis. Due to this activity, glucokinase is considered as an attractive drug target for type 2 diabetes. It created a lot of interest among the researchers, and several small molecules were discovered. The research work was initiated in 1990. However, the hypoglycemic effect, increased liver burden, and loss of efficacy over time were faced during clinical development. Dorzagliatin, a novel glucokinase activator that acts on both the liver and pancreas, is in the late-stage clinical development. TTP399, a promising hepatoselective GK activator, showed a clinically significant and sustained reduction in glycated hemoglobin with a low risk of adverse effects. The successful findings generated immense interest to continue further research in finding small molecule GK activators for the treatment of type 2 diabetes. The article covers different series of GK activators reported over the past decade and the structural insights into the GK-GK activator binding which, we believe will stimulate the discovery of novel GK activators to treat type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Glucoquinase/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Animais , Descoberta de Drogas , Ativadores de Enzimas/química , Ativadores de Enzimas/uso terapêutico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico
7.
Chest ; 161(2): 448-457, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34363816

RESUMO

BACKGROUND: Riociguat is effective in delaying the time to clinical worsening (TCW) in patients with groups 1 and 4 pulmonary hypertension. RESEARCH QUESTION: Is riociguat more effective than placebo in prolonging TCW in sarcoidosis-associated pulmonary hypertension (SAPH)? STUDY DESIGN AND METHODS: This was a double-blind placebo-controlled trial. Patients with SAPH confirmed by right heart catheterization were randomized 1:1 to riociguat or placebo. Patients underwent 6-min walk distance (6MWD) and spirometry testing every 8 weeks. The primary end point was TCW, which was defined by the time to the first of the following: (1) all-cause mortality, (2) need for hospitalization because of worsening cardiopulmonary status attributable to progression of disease, (3) > 50 m decrease in the 6MWD test, or (4) worsening of World Health Organization functional class. RESULTS: A total of 16 patients were randomized to riociguat (n = 8) or placebo (n = 8). No difference was found in pulmonary artery mean, pulmonary vascular resistance, initial 6MWD, or FVC between the two groups. Five of eight patients who received placebo met TCW criteria, whereas none of the patients who received riociguat experienced a qualifying event. By log-rank analysis, patients who received riociguat were in the study for a significantly longer period (χ 2 = 6.259; P = .0124). The 6MWD decreased in the placebo group (median, -55.9 m; range, -176.8 to 60 m), but rose in the riociguat group (median, +42.7 m; range, -7.5 to +91.4 m; P = .0149), with a placebo-corrected difference of 94 m (P < .01). Four of eight patients who received riociguat, but only 1 of 8 patients who received placebo, showed a > 30-m improvement in 6MWD (P > .05). No significant adverse events associated with riociguat occurred. INTERPRETATION: Over the 1 year of the study, riociguat was effective in preventing clinical worsening and improving exercise capacity in patients with SAPH. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT02625558; URL: www.clinicaltrials.gov.


Assuntos
Ativadores de Enzimas/uso terapêutico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Sarcoidose/tratamento farmacológico , Idoso , Progressão da Doença , Método Duplo-Cego , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Sarcoidose/fisiopatologia , Espirometria , Teste de Caminhada
8.
Front Immunol ; 12: 779177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887866

RESUMO

The morbidity and mortality of autoimmune diseases (Ads) have been increasing worldwide, and the identification of novel therapeutic strategies for prevention and treatment is urgently needed. Sirtuin 1 (SIRT1), a member of the class III family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, has been reported to participate in the progression of several diseases. SIRT1 also regulates inflammation, oxidative stress, mitochondrial function, immune responses, cellular differentiation, proliferation and metabolism, and its altered functions are likely involved in Ads. Several inhibitors and activators have been shown to affect the development of Ads. SIRT1 may represent a novel therapeutic target in these diseases, and small molecules or natural products that modulate the functions of SIRT1 are potential therapeutic agents. In the present review, we summarize current studies of the biological functions of SIRT1 and its role in the pathogenesis and treatment of Ads.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Ativadores de Enzimas/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Sirtuína 1/antagonistas & inibidores , Imunidade Adaptativa/efeitos dos fármacos , Animais , Doenças Autoimunes/enzimologia , Doenças Autoimunes/imunologia , Ativação Enzimática , Ativadores de Enzimas/efeitos adversos , Inibidores de Histona Desacetilases/efeitos adversos , Humanos , Imunidade Inata/efeitos dos fármacos , Terapia de Alvo Molecular , Transdução de Sinais , Sirtuína 1/metabolismo
9.
Eur J Pharmacol ; 909: 174397, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332918

RESUMO

Accumulating evidence shows that deregulation of fatty acid (FA) metabolism is associated with the development of cancer. Long-chain acyl-coenzyme A synthases (ACSLs) are responsible for activating long-chain FAs and are frequently deregulated in cancers. Among the five mammalian ACSL family members, ACSL1 is involved in the TNFα-mediated pro-inflammatory phenotype and mainly facilitates cancer progression. ACSL3 is an androgen-responsive gene. High ACSL3 expression has been detected in a variety of cancers, including melanoma, triple-negative breast cancer (TNBC) and high-grade non-small cell lung carcinoma (NSCLC), and correlates with worse prognosis of patients with these diseases. ACSL4 can exert opposing roles acting as a tumor suppressor or as an oncogene depending on the specific cancer type and tissue environment. Moreover, ACSL4 behaves as a crucial regulator in ferroptosis that is defined as a cell death process caused by iron-dependent peroxidation of lipids. ACSL5 is nuclear-coded and expressed in the mitochondria and physiologically participates in the pro-apoptotic sensing of cells. ACSL5 mainly acts as a tumor suppressor in cancers. ACSL6 downregulation has been observed in many forms of cancers, except in colorectal cancer (CRC). Here, we address the differential regulatory mechanisms of the ACSL family members as well as their functions in carcinogenesis. Moreover, we enumerate the clinical therapeutic implications of ACSLs, which might serve as valuable biomarkers and therapeutic targets for precision cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Coenzima A Ligases/metabolismo , Ativadores de Enzimas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/genética , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/agonistas , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Cyst Fibros ; 20(6): 1018-1025, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419414

RESUMO

BACKGROUND: Riociguat is a first-in-class soluble guanylate cyclase stimulator for which preclinical data suggested improvements in cystic fibrosis transmembrane conductance regulator (CFTR) function. METHODS: This international, multicenter, two-part, Phase II study of riociguat enrolled adults with cystic fibrosis (CF) homozygous for Phe508del CFTR. Part 1 was a 28-day, randomized, double-blind, placebo-controlled study in participants not receiving CFTR modulator therapy. Twenty-one participants were randomized 1:2 to placebo or oral riociguat (0.5 mg three times daily [tid] for 14 days, increased to 1.0 mg tid for the subsequent 14 days). The primary and secondary efficacy endpoints were change in sweat chloride concentration and percent predicted forced expiratory volume in 1 second (ppFEV1), respectively, from baseline to Day 14 and Day 28 with riociguat compared with placebo. RESULTS: Riociguat did not alter CFTR activity (change in sweat chloride) or lung function (change in ppFEV1) at doses up to 1.0 mg tid after 28 days. The most common drug-related adverse event (AE) was headache occurring in three participants (21%); serious AEs occurred in one participant receiving riociguat (7%) and one participant receiving placebo (14%). This safety profile was consistent with the underlying disease and the known safety of riociguat for its approved indications. CONCLUSIONS: The Rio-CF study was terminated due to lack of efficacy and the changing landscape of CF therapeutic development. The current study⁠, within its limits of a small sample size, did not provide evidence that riociguat could be a valid treatment option for CF. CLINICAL TRIAL REGISTRATION NUMBER: NCT02170025.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Ativadores de Enzimas/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adulto , Regulador de Condutância Transmembrana em Fibrose Cística , Método Duplo-Cego , Feminino , Homozigoto , Humanos , Masculino
11.
Cells ; 10(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205021

RESUMO

Duchenne muscular dystrophy (DMD) is a muscular disease characterized by progressive muscle degeneration. Life expectancy is between 30 and 50 years, and death is correlated with cardiac or respiratory complications. Currently, there is no cure, so there is a great interest in new pharmacological targets. Sirtuin1 (SIRT1) seems to be a potential target for DMD. In muscle tissue, SIRT1 exerts anti-inflammatory and antioxidant effects. The aim of this study is to summarize all the findings of in vivo and in vitro literature studies about the potential role of SIRT1 in DMD. A systematic literature search was performed according to PRISMA guidelines. Twenty-three articles satisfied the eligibility criteria. It emerged that SIRT1 inhibition led to muscle fragility, while conversely its activation improved muscle function. Additionally, resveratrol, a SIRT1 activator, has brought beneficial effects to the skeletal, cardiac and respiratory muscles by exerting anti-inflammatory activity that leads to reduced myofiber wasting.


Assuntos
Ativadores de Enzimas/uso terapêutico , Músculo Esquelético , Distrofia Muscular de Duchenne , Resveratrol/uso terapêutico , Sirtuína 1 , Humanos , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Sirtuína 1/genética , Sirtuína 1/metabolismo
12.
Medicine (Baltimore) ; 100(22): e26211, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34087896

RESUMO

BACKGROUND: Riociguat is a novel soluble guanylate cyclase stimulator, and has been widely used for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (CTEPH). Some studies found that riociguat had better effects on CTEPH and proved to be safe, but the results were not utterly consistent. Therefore, the purpose of this study was to comprehensively evaluate the efficacy and safety of riociguat in the treatment of CTEPH. METHODS: Randomized controlled trials on riociguat for the treatment of CTEPH were searched through such electronic databases as PubMed, Embase, Cochrane Library, Web of Science, China national knowledge internet, and Wanfang. The outcomes included exercise capacity, pulmonary hemodynamics, and side effects. The fixed-effects or random-effects models were used to analyze the pooled data, and heterogeneity was assessed by the I2 test. RESULTS: Four studies involving 520 patients were included in this meta-analysis. Compared with the placebo group, riociguat significantly improved the hemodynamic indexes and increased 6-min walking distance (P < .0001, standardized mean difference (SMD) = -0.24, 95%CI -0.35 to -0.12; P < .00001, SMD = 0.52, 95%CI 0.33 to 0.71), and decreased the Borg dyspnea score (P = .002, SMD = -0.31, 95%CI -0.51 to -0.12). In addition, riociguat could also significantly reduce the living with pulmonary hypertension scores and increase the EQ-5D scores (P = .01, SMD=-0.23, 95%CI -0.42 to -0.05; P < .00001, SMD = 0.47, 95%CI 0.27 to 0.66), but there was no significant difference in the change level of N-terminal pro-hormone B-type natriuretic peptide in patients with riociguat (P = .20, SMD = -0.24, 95%CI -0.61 to -0.13). The common adverse events of riociguat were dyspepsia and peripheral edema, and no other serious adverse reactions were observed. CONCLUSIONS: We confirmed that riociguat had better therapeutic effects in improving the hemodynamic parameters and exercise capacity in patients with CTEPH without inducing serious adverse events. This will provide a reasonable medication regimen for the treatment of CTEPH.


Assuntos
Ativadores de Enzimas/uso terapêutico , Hipertensão Arterial Pulmonar/tratamento farmacológico , Embolia Pulmonar/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Adulto , Idoso , Estudos de Casos e Controles , China/epidemiologia , Doença Crônica , Gerenciamento de Dados , Ativadores de Enzimas/administração & dosagem , Ativadores de Enzimas/efeitos adversos , Tolerância ao Exercício/efeitos dos fármacos , Feminino , Hemodinâmica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Hipertensão Arterial Pulmonar/complicações , Embolia Pulmonar/complicações , Pirazóis/administração & dosagem , Pirazóis/efeitos adversos , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Segurança , Guanilil Ciclase Solúvel/efeitos dos fármacos , Resultado do Tratamento
13.
J Diabetes Res ; 2021: 6673525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007848

RESUMO

Fibrosis is a physiological response to organ injury and is characterized by the excessive deposition of connective tissue components in an organ, which results in the disruption of physiological architecture and organ remodeling, ultimately leading to organ failure and death. Fibrosis in the lung, kidney, and liver accounts for a substantial proportion of the global burden of disability and mortality. To date, there are no effective therapeutic strategies for controlling fibrosis. A class of metabolically targeted chemicals, such as adenosine monophosphate-activated protein kinase (AMPK) activators and peroxisome proliferator-activated receptor (PPAR) agonists, shows strong potential in fighting fibrosis. Metformin, which is a potent AMPK activator and is the only recommended first-line drug for the treatment of type 2 diabetes, has emerged as a promising method of fibrosis reduction or reversion. In this review, we first summarize the key experimental and clinical studies that have specifically investigated the effects of metformin on organ fibrosis. Then, we discuss the mechanisms involved in mediating the antifibrotic effects of metformin in depth.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/uso terapêutico , Matriz Extracelular/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Animais , Ativação Enzimática , Matriz Extracelular/enzimologia , Matriz Extracelular/patologia , Fibrose , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais
14.
Circ Res ; 128(10): 1435-1450, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33983832

RESUMO

Despite multiple attempts to develop a unifying hypothesis that explains the pathophysiology of heart failure with a reduced ejection fraction (HFrEF), no single conceptual model has withstood the test of time. In the present review, we discuss how the results of recent successful phase III clinical development programs in HFrEF are built upon existing conceptual models for drug development. We will also discuss where recent successes in clinical trials do not fit existing models to identify areas where further refinement of current paradigms may be needed. To provide the necessary structure for this review, we will begin with a brief overview of the pathophysiology of HFrEF, followed by an overview of the current conceptual models for HFrEF, and end with an analysis of the scientific rationale and clinical development programs for 4 new therapeutic classes of drugs that have improved clinical outcomes in HFrEF. The 4 new therapeutic classes discussed are ARNIs, SGLT2 (sodium-glucose cotransporter 2) inhibitors, soluble guanylate cyclase stimulators, and myosin activators. With the exception of SGLT2 inhibitors, each of these therapeutic advances was informed by the insights provided by existing conceptual models of heart failure. Although the quest to determine the mechanism of action of SGLT2 inhibitors is ongoing, this therapeutic class of drugs may represent the most important advance in cardiovascular therapeutics of recent decades and may lead to rethinking or expanding our current conceptual models for HFrEF.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico , Aminobutiratos/uso terapêutico , Antagonistas de Receptores de Angiotensina/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Combinação de Medicamentos , Desenvolvimento de Medicamentos , Ativadores de Enzimas/uso terapêutico , Compostos Heterocíclicos com 2 Anéis/uso terapêutico , Humanos , Modelos Biológicos , Peptídeos Natriuréticos/metabolismo , Neprilisina/antagonistas & inibidores , Pirimidinas/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Guanilil Ciclase Solúvel/metabolismo , Ureia/análogos & derivados , Ureia/uso terapêutico , Valsartana/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
15.
Cells ; 10(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806325

RESUMO

Chemotherapy-induced neuropathic pain (CINP) is a severe adverse effect of platinum- and taxane-derived anticancer drugs. The pathophysiology of CINP includes damage to neuronal networks and dysregulation of signal transduction due to abnormal Ca2+ levels. Therefore, methods that aid the recovery of neuronal networks could represent a potential treatment for CINP. We developed a mouse model of paclitaxel-induced peripheral neuropathy, representing CINP, to examine whether intrathecal injection of decursin could be effective in treating CINP. We found that decursin reduced capsaicin-induced intracellular Ca2+ levels in F11 cells and stimulated neurite outgrowth in a concentration-dependent manner. Decursin directly reduced mechanical allodynia, and this improvement was even greater with a higher frequency of injections. Subsequently, we investigated whether decursin interacts with the transient receptor potential vanilloid 1 (TRPV1). The web server SwissTargetPrediction predicted that TRPV1 is one of the target proteins that may enable the effective treatment of CINP. Furthermore, we discovered that decursin acts as a TRPV1 antagonist. Therefore, we demonstrated that decursin may be an important compound for the treatment of paclitaxel-induced neuropathic pain that functions via TRPV1 inhibition and recovery of damaged neuronal networks.


Assuntos
Benzopiranos/uso terapêutico , Butiratos/uso terapêutico , Ativadores de Enzimas/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/induzido quimicamente , Paclitaxel/efeitos adversos , Animais , Benzopiranos/farmacologia , Butiratos/farmacologia , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Humanos , Camundongos
16.
J Med Chem ; 64(9): 5323-5344, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33872507

RESUMO

Herein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress. The first generation of sGC activators like cinaciguat or ataciguat exhibited limitations and were discontinued. We overcame limitations of first-generation sGC activators and identified a new chemical class via high-throughput screening. The investigation of the structure-activity relationship allowed to improve potency and multiple solubility, permeability, metabolism, and drug-drug interactions parameters. This program resulted in the discovery of the oral sGC activator runcaciguat (compound 45, BAY 1101042). Runcaciguat is currently investigated in clinical phase 2 studies for the treatment of patients with chronic kidney disease and nonproliferative diabetic retinopathy.


Assuntos
Desenho de Fármacos , Ativadores de Enzimas/química , Guanilil Ciclase Solúvel/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Cães , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Simulação de Dinâmica Molecular , Ratos , Ratos Endogâmicos SHR , Solubilidade , Guanilil Ciclase Solúvel/metabolismo , Relação Estrutura-Atividade
17.
Cells ; 10(3)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809718

RESUMO

Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. Aging is also a great risk factor for many age-related diseases. Nowadays, people want not only to live longer but also healthier. Therefore, there is a critical need in understanding the underlying cellular and molecular mechanisms regulating aging that will allow us to modify the aging process for healthy aging and alleviate age-related disease. Here, we reviewed the recent breakthroughs in the mechanistic understanding of biological aging, focusing on the adenosine monophosphate-activated kinase (AMPK), Sirtuin 1 (SIRT1) and mammalian target of rapamycin (mTOR) pathways, which are currently considered critical for aging. We also discussed how these proteins and pathways may potentially interact with each other to regulate aging. We further described how the knowledge of these pathways may lead to new interventions for antiaging and against age-related disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cognição , Envelhecimento Cognitivo , Envelhecimento Saudável/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores Etários , Animais , Biomarcadores/metabolismo , Cognição/efeitos dos fármacos , Ativação Enzimática , Ativadores de Enzimas/uso terapêutico , Estado Funcional , Envelhecimento Saudável/efeitos dos fármacos , Envelhecimento Saudável/psicologia , Humanos , Saúde Mental , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
18.
Nat Commun ; 12(1): 2263, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859183

RESUMO

Argininosuccinate synthase (ASS1) is a ubiquitous enzyme in mammals that catalyzes the formation of argininosuccinate from citrulline and aspartate. ASS1 genetic deficiency in patients leads to an autosomal recessive urea cycle disorder citrullinemia, while its somatic silence or down-regulation is very common in various human cancers. Here, we show that ASS1 functions as a tumor suppressor in breast cancer, and the pesticide spinosyn A (SPA) and its derivative LM-2I suppress breast tumor cell proliferation and growth by binding to and activating ASS1. The C13-C14 double bond in SPA and LM-2I while the Cys97 (C97) site in ASS1 are critical for the interaction between ASS1 and SPA or LM-2I. SPA and LM-2I treatment results in significant enhancement of ASS1 enzymatic activity in breast cancer cells, particularly in those cancer cells with low ASS1 expression, leading to reduced pyrimidine synthesis and consequently the inhibition of cancer cell proliferation. Thus, our results establish spinosyn A and its derivative LM-2I as potent ASS1 enzymatic activator and tumor inhibitor, which provides a therapeutic avenue for tumors with low ASS1 expression and for those non-tumor diseases caused by down-regulation of ASS1.


Assuntos
Argininossuccinato Sintase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Citrulinemia/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Macrolídeos/farmacologia , Proteínas Supressoras de Tumor/agonistas , Adulto , Idoso , Animais , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/isolamento & purificação , Ácido Aspártico/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citrulina/metabolismo , Citrulinemia/genética , Ativadores de Enzimas/uso terapêutico , Feminino , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Macrolídeos/uso terapêutico , Metabolômica , Camundongos , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Pirimidinas/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Clin Exp Nephrol ; 25(8): 807-821, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33779856

RESUMO

Acute kidney injury (AKI) is a complex disorder and a clinical condition characterized by acute reduction in renal function. If AKI is not treated, it can lead to chronic kidney disease, which is associated with a high risk of death. SIRT1 (silent information regulator 1) is an NAD-dependent deacetylase. This enzyme is responsible for the processes of DNA repair or recombination, chromosomal stability, and gene transcription. This enzyme also plays a protective role in many diseases, including AKI. In this study, we review the mechanisms that mediate the protective effects of SIRT1 on AKI, including SIRT1 activators.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Ativadores de Enzimas/uso terapêutico , Sirtuína 1/metabolismo , Injúria Renal Aguda/metabolismo , Animais , Apoptose , Humanos , Inflamação/metabolismo , Mitofagia , Terapia de Alvo Molecular , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Proteção , Fator de Crescimento Transformador beta/metabolismo
20.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188533, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33785381

RESUMO

Parkin, an E3 ubiquitin ligase has been found to be deregulated in a variety of human cancers. Our current understanding is endowed with strong evidences that Parkin plays crucial role in the pathogenesis of cancer by controlling/interfering with major hallmarks of cancer delineated till today. Consistent with the idea of mitophagy, the existing studies imitates the tumor suppressive potential of Parkin, resolved by its capacity to regulate cell proliferation, cell migration, angiogenesis, apoptosis and overall cellular survival. Dysfunction of Parkin has resulted in the loss of ubiquitination of cell cycle components followed by their accumulation leading to genomic instability, perturbed cell cycle and eventually tumor progression. In this review, we provide an overview of current knowledge about the critical role of Parkin in cancer development and progression and have focussed on its therapeutic implications highlighting the diagnostic and prognostic value of Parkin as a biomarker. We earnestly hope that an in-depth knowledge of Parkin will provide a linchpin to target in various cancers that will open a new door of clinical applications and therapeutics.


Assuntos
Neoplasias/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ativação Enzimática , Ativadores de Enzimas/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...